The MIT Challenge
My friend Scott Young recently finished an astounding feat: he completed all 33 courses in MIT’s fabled computer science curriculum, from Linear Algebra to Theory of Computation, in less than one year. More importantly, he did it all on his own, watching the lectures online and evaluating himself using the actual exams. (See Scott’s FAQ page for the details of how he ran this challenge.)
That works out to around 1 course every 1.5 weeks.
As you know, I’m convinced that the ability to master complicated information quickly is crucial for building a remarkable career (see my new book as well as here and here). So, naturally, I had to ask Scott to share his secrets with us. Fortunately, he agreed.
Below is a detailed guest post, written by Scott, that drills down to the exact techniques he used (including specific examples) to pull off his MIT Challenge.
Take it away Scott…
How I Tamed MIT’s Computer Science Curriculum, By Scott Young
I’ve always been excited by the prospect of learning faster. Being good at things matters. Expertise and mastery give you the career capital to earn more money and enjoy lifestyle perks. If being good is the goal, learning is how you get there.
Despite the advantages of learning faster, most people seem reluctant to learn how to learn. Maybe it’s because we don’t believe it’s possible, that learning speed is solely the domain of good genes or talent.
While there will always be people with unfair advantages, the research shows the method you use to learn matters a lot. Deeper levels of processing and spaced repetition can, in some cases, double your efficiency. Indeed the research in deliberate practice shows us that without the right method, learning can plateau forever.
Today I want to share the strategy I used to compress the ideas from a 4-year MIT computer science curriculum down to 12 months. This strategy was honed over 33 classes, figuring out what worked and what didn’t in the method for learning faster.


